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1 INTRODUCTION 

1.1 Problem Statement 

The Midwest Guardrail System (MGS) has been full-scale crash tested in many 

configurations, including installations on and adjacent to slopes [1-5], with different types of 

wood posts [6-12], with and without blockouts [13-22], for culvert and bridge applications [23-

28], and in combination with curbs, transitions, and high flare rates [14, 29-34]. Although the 

performance of the MGS, the dynamic deflection, and working width of the barrier have been 

examined in great detail at Test Level 3 (TL-3) impact conditions, little is known about the 

dynamic deflection and working width of the MGS when impacted at lower speeds.  

The MGS is a relatively low-cost barrier, and the TL-3 version could be installed for TL-

2 and TL-1 applications. However, it can be difficult to provide TL-3 deflection or working 

width for the MGS in lower speed urban or transitional areas because of bicyclist and pedestrian 

considerations, limited right of way, traffic control structures, or obstructions which have close 

proximity to the roadway. The barrier is expected to capture or redirect errant vehicles impacting 

at speeds less than used for crash testing according to TL-3 of the Manual for Assessing Safety 

Hardware (MASH) [35]. Accurate dynamic deflections and working widths of the MGS when 

impacted at lower speeds are critical for the safe placement of guardrail to reduce the likelihood 

of vehicle impact with a shielded hazard in the Zone of Intrusion (ZOI). Also, some 

modifications to the MGS, such as reduced blockout depth or non-blocked options, may help to 

reduce working width and dynamic deflections in limited offset installations. These 

modifications are more desirable at lower speeds, because the likelihood of vehicles snagging on 

posts decreases as impact speed decreases.  

1.2 Research Objective 

The research objective was to identify the dynamic deflection and working width of the 

MGS for TL-3, TL-2, and TL-1 impact conditions on level ground and in combination with 6-in. 

(152-mm) tall, AASHTO Type B curbs. 

1.3 Scope 

In order to complete the research objective, several tasks were completed. First, a model 

of a 175-ft (53.3-m) long MGS impacted by a 2007 Chevrolet Silverado 2270P pickup truck 

model was simulated in LS-DYNA and calibrated against test no. 2214MG-2 [36]. Next, impacts 

with the MGS were simulated at 31 mph (50 km/h), 44 mph (70 km/h), and 62 mph (100 km/h) 

and 25 degrees, in accordance with MASH [35] TL-1, TL-2, and TL-3 test conditions, 

respectively. The impact locations were varied from the midspan upstream from post no. 12 to 

the midspan downstream from post no. 12, in increments of ¼-post spans. Lastly, the maximum 

dynamic deflections and working widths were identified. 
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2 LS-DYNA MODEL CALIBRATION 

2.1 MGS Model 

Computer simulation models of the Midwest Guardrail System (MGS) were successfully 

calibrated and validated against full-scale crash testing [e.g., 37-38] using the Roadside Safety 

Verification and Validation Program (RSVVP) [39-40]. The baseline model of the MGS was 

calibrated with results from test no. 2214MG-2 [36], and consisted of a 2270P pickup truck 

impacting the MGS installed in standard soil and with standard post spacing. Impact conditions 

were consistent with MASH TL-3. The simulated impact conditions were based on the actual 

impact speed and angle determined from test results. The MGS model consisted of calibrated end 

anchorages [41-42], refined meshes in critical rail locations, and improved vehicle-to-barrier 

contacts.  

2.2 Vehicle Model Comparison 

Three revised models of a 2007 Chevrolet Silverado pickup truck model originally 

developed by the National Crash Analysis Center (NCAC) [43] were used to simulate test no. 

2214MG-2. The three Silverado models were the Silverado Version 2 (Silverado-v2), Version 3 

(Silverado-v3), and reduced Version 3 (Silverado-v3r), as shown in Figure 1. Each vehicle model 

was modified with refined meshes of critical components and modified contacts, and each was 

modified for use in roadside safety impacts.  

 

 Silverado Version 2 Silverado Version 3 Silverado Reduced Version 3 

 (Silverado-v2) (Silverado-v3) (Silverado-v3r) 

Figure 1. Computer Simulation Models of 2270P Chevrolet Silverado Pickup Trucks 

Each model contains different features and can be well-suited for different applications 

[43]. In general, the Silverado-v2 pickup truck model is not well-suited for simulations in which 

steering or accurate representations of lateral wheel forces are critical, although Silverado-v3 and 

Silverado-v3r versions included the possibility for the wheels to turn when lateral forces were 

applied to the wheel or tire. The tire model utilized with the Silverado-v2 model was more 

compliant than the tire models applied to the Silverado-v3 and Silverado-v3r versions of the 

pickup truck. Model developers indicated that the softer tire more accurately represented tire 

impacts (including curbs, posts, or rocks) but was also prone to instabilities. As a result, the 

Silverado-v3 and Silverado-v3r tire models were more numerically stable, in general, than the 

Silverado-v2 tire model. Both the Silverado-v2 and Silverado-v3 versions of the pickup truck 

utilized detailed component models with finely-meshed components but tended to be more 

computationally expensive than the coarser-mesh Silverado-v3r model. Simulation run times and 
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file sizes decreased for the Silverado-v3r model compared to the Silverado-v2 and Silverado-v3 

versions, but the coarser mesh tended to be stiffer and less sensitive than the refined meshes.  

2.2.1 Vehicle Stability and Barrier Deflections 

For test no. 2214MG-2, the vehicle was stable during and after redirection, with minimal 

pitch or roll motion. The simulation models tended to over-predict rotations, as shown in Figure 

2. The dynamic deflection of the pickup truck during test no. 2214MG-2 was larger than the 

simulation models predicted. All three vehicle models were redirected sooner after impact than 

occurred in the full-scale test, and maximum dynamic deflection of the test was approximately 5 

to 6 in. (127 to 152 mm) larger than in the simulations, as shown in Table 1. It appeared that the 

simulated system was stiffer overall than the as-tested system, resulting in amplified roll and 

pitch angular rotations and reduced dynamic deflections compared to the physical test. Soil 

properties of the simulation did not exactly replicate the behavior observed in the full-scale tests. 

The soil used in the full-scale test was not uniformly compacted and may have contributed to 

some anomalous behavior. This phenomenon is discussed in detail in Section 4.2. 

 

 
Test No. 2214MG-2 

 
Silverado-v3

 
Silverado-v2 

 
Silverado-v3r 

Figure 2. Vehicle Behavior Comparison 
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Table 1. Maximum Dynamic Deflections 

 

2.2.2 Velocity Profile 

The changes in longitudinal velocity for the test and simulation are shown in Figure 3. 

Both test and simulation results were processed using the same procedure. Overall, the 

Silverado-v3 model was the most similar to the test results through 250 ms after impact, but the 

Silverado-v2 model correlated better with the test results through 400 ms. The Silverado-v3r 

model indicated a larger reduction in speed, over a shorter time period, than the other two 

models. For all vehicle models, the change in longitudinal velocity correlated reasonably well 

with the test data, but the Silverado-v2 model was determined to be optimized. 

 

Figure 3. Longitudinal Velocity Profile 

Test No./ Vehicle 

Model 
Roll Pitch Yaw

2214MG-2 3.0° 1.8° -43.0°

Silverado-v2 12.9° 5.7° -43.8°

Silverado-v3 19.5° 6.1° -40.3°

Silverado-v3r 15.8° 7.7° -44.3°
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The Silverado-v2 model most accurately represented the vehicle behavior and system 

response observed in test no. 2214MG-2. The Silverado v2 model predicted the lowest pitch and 

roll angles and highest barrier deflections. The longitudinal velocity profile was best-correlated 

with the full-scale crash test. The simulation with the Silverado v2 vehicle model passed 

statistical significance tests according to RSVVP [37-40] and was determined to be an acceptable 

representation of the test data. Therefore, the Silverado-v2 model was used to investigate the 

MGS model at the MASH TL-1 and TL-2 impact conditions. 
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3 MGS AT TL-1 AND TL-2 IMPACT CONDITIONS 

The baseline simulation of the Chevrolet Silverado v2 pickup truck impacting a tangent, 

175-ft (53.3-m) long MGS in standard soil was modified to simulate impacts at 31 mph (50 

km/h) and 44 mph (70 km/h). The lower impact speeds corresponded to impacts with the MGS at 

TL-1 and TL-2 impact conditions, respectively, and drawings of the system which was simulated 

are shown in Figure 4. A total of five impacts were simulated for each speed, and impact 

conditions were varied in ¼-post span increments starting at the midspan between post nos. 11 

and 12, respectively, and terminating at the midspan between post nos. 12 and 13. 

Soil conditions vary widely from state to state, and even vary widely within a state. It is 

impossible to predict what the dynamic deflection and working width will be without knowing 

the type, strength, moisture content, and cohesiveness of the soil in that location. Other 

complicating factors, such as asphalt overlays or posts embedded in soil tubes or concrete, 

further affect vehicle-to-barrier impact dynamics. To reduce the probability that impacting 

vehicles will impact or interact with a shielded feature or hazard, a soil model weaker than the 

standard MASH soil was selected to generate conservative working width estimates. Stronger 

soils for real-world systems may result in reduced deflections compared to those shown in this 

analysis, but if dynamic deflections and working widths must be less than those recommended in 

this report, stiffer barrier constructions (i.e., half- or quarter-post spacing, or thrie beam) are 

preferable to relying on a unsaturated, compacted, MASH strong soil. 

3.1 Qualitative Analysis 

Sequential images of TL-1, TL-2, and TL-3 impacts with a tangent MGS are shown in 

Figures 5 through 7. Barrier deflections, barrier exit times and longitudinal exit displacements, 

vehicle roll and pitch angles, and the number of posts damaged increased with increased impact 

speed. For all impact conditions, vehicles were smoothly redirected with no instabilities. Vehicle 

damage was limited for impacts at TL-1 and TL-2 impact conditions, and barrier permanent sets 

were minimal.  

3.2 Working Width Dependency on Impact Location  

Maximum dynamic deflection of the system is a measure of the maximum distance any 

individual component in the system deflected when compared to its undeflected position. 

Working width is defined as the farthest distance the barrier or vehicle extended laterally during 

impact, as measured from the original, undeformed front face of the guardrail. Working widths 

are always greater than or equal to dynamic deflections.  

Several impact locations were investigated at each test level to determine how impact 

location influenced maximum dynamic deflections and working widths, as shown in Tables 2 

through 4. These impact locations demonstrated how impacting at and around a post influenced 

barrier deflections. 
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Table 2. Test Level 1: Barrier Deflections and Working Widths 

Test Level 1 - 31 mph  (50 km/h) 

Impact 

Location 

Maximum Dynamic Deflection 

in.  (mm) 

Working Width 

in.  (mm) 

Max Working 

Width Component 

11½ 16.6  (422) 35.3  (896) Post no. 12 

11¾ 15.6  (397) 37.0  (940) Post no. 13 

12 15.1  (383) 37.6  (955) Post no. 13 

12¼ 15.7  (398) 37.3  (947) Post no. 13 

12½ 15.9  (405) 35.2  (895) Post no. 13 

Table 3. Test Level 2: Barrier Deflections and Working Widths 

Test Level 2 - 44 mph  (70 km/h) 

Impact 

Location 

Maximum Dynamic Deflection 

in.  (mm) 

Working Width 

in.  (mm) 

Max Working 

Width Component 

11½ 24.0  (610) 48.5  (1,232) Post no. 13 

11¾ 25.0  (634) 49.3  (1,251) Post no. 13 

12 24.5  (622) 46.5  (1,181) Post no. 13 

12¼ 24.4  619) 47.6  (1,210) Post no. 14 

12½ 24.1  (612) 48.3  (1,228) Post no. 14 

Table 4. Test Level 3: Barrier Deflections and Working Widths 

Test Level 3 - 62 mph  (100 km/h) 

Impact 

Location 

Maximum Dynamic Deflection 

in.  (mm) 

Working Width 

in.  (mm) 

Max Working 

Width Component 

11½ 37.5  (952) 58.1  (1,475) Post no. 13 

11¾ 38.0  (964) 60.2  (1,530) Post no. 14 

12 36.6  (930)
*
 59.6  (1,515)

*
 Post no. 14 

12¼ 39.3  (997) 59.3  (1,505) Post no. 14 

12½ 37.7  (957) 58.7  (1,491) Post no. 14 
*
Simulation terminated at 240 ms 

NOTE: Impact location indicates where the barrier was first contacted by the vehicle. Spacings denoted with a ¼, ½, 

or ¾ post spacing increment refer to fractions of nominal post spacing, equal to 75 in. (1,905 mm). Thus, an impact 

at 11¾ refers to an impact ¾ of a post span, or 56¼ in. (1,429 mm), downstream from post no. 11. 
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Figure 5. Sequential Images of TL-1 Impact with MGS 
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Figure 6. Sequential Images of TL-2 Impact with MGS  
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Figure 7. Sequential Images of TL-3 Impact with MGS  
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Maximum dynamic deflections and working widths were relatively constant regardless of 

impact location, although fluctuations of up to three inches were observed. The maximum 

dynamic deflection and working width were never maximized for impacts at posts, as shown in 

Figures 8 through 10. In general, the vehicle’s location within the system at the point of 

maximum dynamic deflection influenced how far the system was able to deflect. Impacts which 

occurred at post locations were associated with shorter dynamic deflections and working widths 

than impacts at the midspans for all speeds. However, the maximum dynamic deflections and 

working widths occurred at the midspan upstream from post no. 12 for TL-1 impact conditions, 

¼-span upstream from post no. 12 for TL-2 impact conditions, and ¼-span downstream from 

post no. 12 for TL-3 impact conditions. 

 

Figure 8. System Deflections Versus Impact Location for Test Level 1 Impacts 
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Figure 9. System Deflections Versus Impact Location for Test Level 2 Impacts 

 

Figure 10. System Deflections Versus Impact Location for Test Level 3 Impacts 
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3.3 Maximum Barrier Deflections and Working Widths 

Maximum barrier deflections and working widths were recorded for each of the three 

simulations to determine how test levels influenced barrier deflections and working widths, as 

shown in Table 5. There was a larger increase in barrier deflections between the TL-2 and TL-3 

impact conditions, equal to 13.0 in. (330 mm), than between TL-1 and TL-2 impact conditions, 

equal to 9.3 in. (237 mm). The differences were likely associated with an 18.6 mph (30 km/h) 

increase in velocity and 104 percent increase in impact energy between the TL-2 and TL-3 

impact conditions, in comparison with a 12.4 mph (20 km/h) increase in velocity and 96 percent 

increase in impact energy between TL-1 and TL-2 impact conditions. 

Table 5. Barrier Deflection and Working Width Comparison across Test Levels 

Test 

Level 

MASH  

IS Value 

kip-in. (kJ) 

Maximum Dynamic 

Deflection 

 in.  (mm) 

Working Width 

in.  (mm) 

Vehicle/System 

Component 

1 28.7 (38.9) 15.6  (397) 37.0  (940) Post no. 13 

2 57.8 (78.4) 25.0  (634) 49.3  (1,251) Post no. 13 

3 114.8 (155.6) 38.0  (964) 60.2  (1,530) Post no. 14 

 

The working widths increased by 12.2 in. (311 mm) from TL-1 to TL-2 and 11.0 in. (279 

mm) from TL-2 to TL-3. At all three test levels, deflected posts were the elements with the 

greatest working width. At the TL-1 and TL-2 impact conditions, post no. 13 deflected the 

farthest, whereas at TL-3, post no. 14 deflected the farthest. In addition to working width and 

dynamic deflection, the contact length, or longitudinal length of barrier in contact with the 

vehicle, also increased with higher impact speeds. The redirection times also increased 

corresponding to increased length of barrier engagement. It appears that the correlation between 

maximum dynamic deflection and working with is approximately linear at an impact angle of 25 

degrees, as shown in Figures 11 and 12. 
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Figure 11. Maximum Working Width and Dynamic Deflections Based on Impact Speed 

 

Figure 12. Working Width and Dynamic Deflection Based on IS Value 
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3.4 Discussion 

Maximum dynamic deflections and working widths increased as speed increased. As 

shown in Tables 2 through 4, there appears to be a 10- to 15-in. (254- to 381-mm) increase in the 

maximum dynamic deflection and working width for each increase in test level. For TL-1, TL-2, 

and TL-3 impact speeds, dynamic deflections were generally minimized for impacts at posts. In 

contrast, impact locations contributing to maximum working widths varied based on impact 

speed. Nonetheless, all working width and dynamic deflection differences were within 3 in. (76 

mm).  

For all simulations, the maximum working width corresponded to the top of a post or 

blockout. Researchers observed that the post-in-soil forces exhibited similar load and deflection 

characteristics to “weak” or native soils. Thus, the simulated working widths were believed to be 

conservative. Simulated working widths were associated with post or blockout deflections, 

whereas full-scale test working widths were more commonly associated with rail or vehicle 

displacements. However, because the posts tended to rotate further than what was observed in 

full-scale crash tests, and engaged the rail for a longer period of time, more energy was absorbed 

by the posts’ soil rotations, and the dynamic deflections of the rail and impacting vehicle were 

lower than observed in full-scale testing.  

Barriers installed in compliance with the conservative estimates of working width from 

simulations will reduce the likelihood that an impacting vehicle will engage a hazard located 

behind the guardrail at the design impact condition (i.e., TL-3, TL-2, or TL-1). In contrast, 

adopting a guardrail placement consistent with the maximum dynamic deflection may permit the 

use of less expensive shielding systems when hazards are located close to the roadway, such as 

in urban or suburban areas, or may allow for increased guardrail offsets from the roadway. 

However, it is possible that some vehicles impacting at the design impact conditions may engage 

the shielded hazard behind the guardrail. Maintenance records for guardrail repair may provide 

limited scope of the extent of permanent set experienced, by noting the number of posts 

deformed or separated from the rail, the number of posts and rail segments replaced, and number 

of damaged blockouts [44]. 

It would be desirable to estimate the percentage of crashes in which the vehicle would 

engage the hazard or statistical likelihood of a design impact engaging a shielded hazard using 

the maximum dynamic deflection condition. Unfortunately, crash reconstruction databases, such 

as the one collected in support of the National Cooperative Highway Research Program 

(NCHRP) Report No. 665 [45], tended to oversample crashes high impact speeds and severities 

particularly on lower-speed roadways. The Impact Severity Values (IS Values) for impacts 

consistent with TL-3, TL-2, and TL-1 test conditions were 115.4, 64.9, and 28.8 kip-ft (156.5, 

88.0, and 39.0 kJ). According to the NCHRP Report No. 665 crash reconstruction database, these 

IS values were representative of the 95
th

, 91
st
, and 83

rd
 percentile IS values, respectively. The 

diminishing representation of IS values higher than the design condition may indicate that more 

vehicles depart the road at elevated IS values on lower design condition roads, but it likely also 

reflects that the database oversampled higher-speed, higher-severity crashes on roads with lower 

speed limits in comparison with crashes on higher-speed, higher-service level roads. As a result, 

a design condition based on the maximum working width provided in this report should result in 

a minimum of 95, 91, and 83 percent of vehicles impacting in critical locations which will be 
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satisfactorily redirected with impact conditions consistent with MASH TL-3, TL-2, and TL-1, 

respectively.  

If guardrail offsets from hazards are reduced, there is a possibility that the impacting 

vehicle will engage or interact with the shielded hazard. However, the statistical likelihood of (1) 

impact in critical locations with (2) IS values at or above the design condition are small. States 

must determine if the benefits associated with closer guardrail-to-hazard offset and increased 

guardrail offset from the road outweigh the potential consequences of a vehicle engaging a 

hazard while being redirected by the rail. 
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4 MGS INSTALLED IN COMBINATION WITH CURB 

4.1 Introduction and Motivation 

In some locations, particularly urban or suburban arterials, collectors, and local roads, 

guardrail may be installed in combination with a curb or drainage structure. Vehicle instabilities 

have been observed with some curb-and-guardrail installation configurations [46-47]. The MGS 

was successfully full-scale crash tested with the face of the guardrail located 6 in. (152 mm) 

behind the front face of a curb consistent with the AASHTO Type B curb [13-14, 48]. A second 

configuration consisting of an MGS-to-thrie beam transition with a wedge-shaped curb [29-32] 

was also successfully full-scale crash tested. 

Many of the curb-and-guardrail installations on urban or suburban roads occur in 

combination with TL-2 or TL-1 design level roadways, which can be characterized by lower 

posted speed limits, more discrete hazards, and closer hazard proximities to the roadway. In 

addition, right-of-way in urban and suburban areas may not be as large as for rural highways. 

Guardrail installed behind curbs can reduce deflections [13-14], which is advantageous for 

scenarios in which guardrail offsets from hazards and the roadway are limited. Thus, the effects 

of guardrail and curb combinations were also selected for analysis at lower test level applications 

according to MASH. 

As with guardrail installed on level terrain, it was unlikely that passenger cars, and in 

particular small cars, would demonstrate increased instability or likelihood of underride, 

override, rail rupture, occupant compartment deformation, or adverse occupant risk when 

impacts occurred at lower speeds than at higher speeds. Thus, only pickup trucks were 

considered during simulations of guardrails installed in combination with curbs. 

The baseline simulation of the Chevrolet Silverado v2 pickup truck impacting a tangent, 

175-ft (53.3-m) long MGS was modified to simulate impacts with guardrail located 6 in. (152 

mm) behind the front face of a 6-in. (152-mm) tall AASHTO Type B curb. Further simulations 

were conducted at 31 mph (50 km/h) and 44 mph (70 km/h). The lower impact speeds 

corresponded to impacts with the MGS at TL-1 and TL-2 impact conditions, respectively. A total 

of five impacts were simulated for each speed, at quarter-post spacing starting at the midspan 

between post nos. 11 and 12, and terminating at the midspan between post nos. 12 and 13. 

4.2 Comparison and Validation of Simulation Model with Curb 

The MGS was approved for installation 6 in. (152 mm) behind a curb, based on 

successful full-scale crash test no. NPG-5 [13-14], which was conducted under the TL-3 test 

conditions and evaluation criteria found in NCHRP Report No. 350 [51]. The 2000P test vehicle 

used for that test series was a ¾-ton, Chevrolet C2500 pickup truck. With the adoption of 

MASH, some systems, including the MGS, were grandfathered as successful systems. Further 

testing with the MGS with MASH vehicles indicated a high likelihood of successful performance 

with standard impact conditions [38].  

No tests have been conducted on the MGS installed 6 in. (152 mm) behind a curb using 

the MASH 2270P vehicle. Other tests have been related to the use of guardrail adjacent to curbs, 

including the MGS installed 8 ft (2.4 m) behind the front face of a curb [46-47] and guardrail 
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installed 6 in. (152 mm) behind the front face of a 4-in. (102-mm) tall, wedge-shaped curb [49-

50]. However, the performance of these systems varied greatly from the MGS installed behind 

curb in standard configuration. For example, the barrier located 8 ft (2.4 m) behind the front face 

of a curb was impacted by an airborne vehicle and had standard embedment depth with respect to 

the ground behind the curb. However, the MGS installed 6 in. (152 mm) behind the front face of 

the curb had a 6-in. (152-mm) deeper embedment depth to retain a 31-in. (787-mm) tall guardrail 

top mounting height. In addition, the guardrail installed with wedge-shaped curb was utilized in a 

transition, and thus had smaller post spacings, larger and stiffer posts, and a different anchorage 

than the MGS behind curb. Instead, test no. NPG-5 results were evaluated to determine if the 

performance of the simulated system was reasonable, compared with the as-tested system 

approved according to the criteria presented in NCHRP Report No. 350. 

4.2.1 Modifications to Level Terrain Baseline Model 

The model of the MGS located 6 in. (152 mm) behind the face of an AAHSTO Type B 

curb was identical to the model used in the first phase of this research project, except for two 

major modifications. First, a 6-in. (152-mm) tall, rigid, AASHTO type B curb was added to the 

model, and it was located with the front face of the curb 6 in. (152 mm) in front of the front face 

of the rail. Second, the embedment depth of the posts was increased by 6 in. (152 mm). The 

composite soil moment was increased proportionately with the square of the ratio of the 

embedment depths, consistent with previous recommendations by MwRSF [52]. The ratio of soil 

stiffness relative to level, flat ground was reduced from a nominal number of 1.15 to 1.10, in an 

attempt to be conservative and overestimate the working width. The simulated test vehicle and 

impact conditions for the MGS barrier in combination with curb were identical to those used in 

the level terrain phase of this project: 62.1 mph (100 km/h) and 25 degrees relative to the face of 

the barrier, with the left side of the vehicle aligned with the upstream edge of post no. 12. The 

model of the system is shown in Figure 13. 

 

Figure 13. Model of MGS in Combination with Curb 

Curb 

Roadway 

MGS 
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4.2.2 Description of Test No. NPG-5 

Test no. NPG-5 consisted of a standard configuration of MGS, with two major 

modifications. First, a 6-in. (152-mm) tall, AASHTO Type B curb was installed 6 in. (152 mm) 

from the midpoint of the curb face to the guardrail. Second, soil fill behind the post was made 

level with the top surface of the curb. The posts were 72 in. (1,829 mm) long and embedded 46 

in. (1,168 mm) in soil behind the curb, such that the top guardrail mounting height was 31 in. 

(787 mm) measured above the roadway. Each W6x9 (W152x13.4) post was installed with a 12-

in. (305-mm) deep blockout. The test vehicle, a 1997 Chevrolet C2500, ¾-ton pickup truck 

weighing 4,389 lb (1,991 kg), impacted the system 3 in. (76 mm) upstream from post no. 12 at 

60.1 mph (96.7 km/h) and 24.8 degrees. Impact conditions and system photographs are shown in 

Figure 14. 

4.2.3 Comparison of Results, Simulation and Test No. NPG-5 

Results from the simulation of the MGS installed in combination with a 6-in. (152-mm) 

tall, AASHTO Type B curb and impacted with a 2270P pickup truck model at 62.1 mph (100 

km/h) and 25 degrees were compared to results from test no. NPG-5 to determine if the model 

could be reasonably calibrated based on available test data. Sequential images of the simulation 

and test are shown in Figure 15, and results are shown in Table 6. Post-test photographs are 

shown in Figures 16 through 18. 

For test no. NPG-5, the 2000P test vehicle impacted the rail and was redirected, with a 

maximum dynamic deflection of 43.1 in. (1,095 mm), and a maximum working width of 49.6 in. 

(1,260 mm) measured from the right-front corner of the hood to the undamaged front face of the 

rail. Posts upstream and downstream from impact experienced significant twisting toward 

impact, and the end anchorages were permanently displaced approximately 1½ in. (38 mm). 

During impact, the right-front tire impacted the blockout attached to post no. 16 which deflected 

longitudinally, and was pulled completely out of the soil and came to rest against post no. 17, as 

shown in Figure 17. 

For the simulation, the maximum dynamic deflection was 33.4 in. (848 mm), and the 

maximum vehicle protrusion over the rail was 38.8 in. (986 mm). The maximum working width 

was 48.8 in. (1,240 mm), measured between the deflected back flange of post no. 14 to the 

undamaged front face of the rail. The working width associated with vehicle protrusion over the 

rail was less than the working width associated with post deflection. Note that the geometries of 

the hood and fenders were different for the 2000P test vehicle and 2270P simulation vehicle. 

The simulated dynamic deflection was less than what was recorded for test no. NPG-5. 

However, dynamic deflections and working widths of recent full-scale crash tests involving a 

2270P pickup truck impacting an MGS in a non-blocked configuration [18-19], and in 

combination with a mechanically-stabilized earth (MSE) wall [20-22], both had working widths 

less than or equal to 45 in. (1,143 mm). Also, the permanent anchorage displacement during a 

TL-3 MASH test with a 2270P light pickup truck impacting a system that was only 75 ft (22.9 

m) long in support of the determination of the minimum effective length of guardrail was ¾ in. 

(19 mm) [55]. Due to the increased embedment depth of the posts in the MGS installed in 

combination with a 6-in. (152-mm) tall AASHTO Type B curb, it would be reasonable to expect 
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Figure 14. Impact Location and MGS Installed in Combination with Curb, Test No. NPG-5 
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 0.000 sec 0.000 sec 

   
 0.140 sec 0.138 sec 

   
 0.290 sec 0.292 sec 

   
 0.400 sec 0.406 sec 

   
 0.780 sec 0.776 sec 

Figure 15. Sequential Images, Simulation (2270P) and Test No. NPG-5 (2000P) 
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Table 6. Summary of Simulation and Test No. NPG-5 Results 

 

 

 

Figure 16. System Damage, Test No. NPG-5 

Comparison
Working Width

in. (mm)

Maximum 

Dynamic 

Deflection

in. (mm)

IS Value

kJ

Posts 

Deflected

Posts 

Disengaged 

from Rail

End Anchorage 

Permanent Set

in. (mm)

Simulation 48.8 (1,240) 33.4 (848) 156 6 3 Negligible

Test No. NPG-5* 49.6 (1,260)** 38.4 (975)** 126 7 5 1.5 (38)

**NOTE: Working width and dyanmic deflection obtained from overhead camera view have a uncertainty of 10%.

*NOTE: The soil foundation for posts and end anchorages used in test no. NPG-5 was determined to have unusually low-strength.
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Figure 17. Post No. 16 Pulled Out of Ground, Test No. NPG-5 
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(a) 

      

(b) 

Figure 18. Post and Soil Displacement, Test No. NPG-5 (a) Upstream End Anchorage  

(b) Post No. 12 
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that the maximum dynamic deflections and working widths would be substantially less than for 

systems installed on level terrain or on slopes. Because MASH testing has so far resulted in 

similar, and at times lower, dynamic deflections and working widths than tests conducted in 

accordance with NCHRP Report No. 350, despite a 13.5 percent increase in energy at impact 

(i.e., IS value), researchers believe the soil was weaker that often used in full-scale crash testing 

in this test and a comparison with the 2270P simulation was reasonable.  

There is further evidence that soil strengths associated with full-scale crash tests 

conducted prior to the final acceptance of MASH may have been less stringently controlled than 

what MASH requires. At times, this led to some unexpected test results. For example, significant 

vertical and longitudinal displacement of an MGS end anchorage occurred during full-scale crash 

tests of a long-span system [25-26] and a flared approach guardrail length during test no. FR-4 

[33]. 

Another major difference between the test and simulation consisted of wheel geometry. 

The vehicle utilized during test no. NPG-5 had a stiffer suspension (i.e., ¾-ton vs. ½-ton in the 

model) and increased gap between the wheel and fender, which allowed the guardrail to protrude 

behind the wheel during redirection. As the rail protruded behind the wheel, it lifted the right 

(impacting) side upward. This rolling moment and the truck’s lesser roll moment of inertia 

compared to the 2270P resulted in a higher roll angle displacement, and the truck remained 

engaged with the rail for a longer amount of time than the 2270P model. The right-front wheel of 

the simulated truck was not restricted and rebound occurred more smoothly and quickly.  

Although not all events of the test could be replicated, particularly the end anchorage 

displacement and post removal from the ground, researchers believe that calibration with this 

weak soil test was both reasonable and conservative. The simulated and full-scale test working 

widths were nearly identical, despite unusually weak soil for the posts installed behind a curb. 

Also, the MGS model for level terrain compared well with the testing results, and the 

modifications to the model to account for increased embedment depth have been previously 

validated, as discussed. Thus, the simulation results were believed to be conservative, and thus 

useful for continued use to determine maximum working widths at varying speeds and impact 

locations.  

4.3 Modifications for Alternative Impact Locations and Speeds 

The same procedure used during the level-terrain simulation of the MGS at TL-3, TL-2, 

and TL-1 conditions was used to investigate the working width of the MGS installed with the 

front face of the guardrail located 6 in. (152 mm) behind the midpoint of the front face of a 6-in. 

(152-mm) tall AASHTO Type B curb. Impacts were investigated at between ½-post span 

(midspan) upstream from post no. 12 to ½-post span (midspan) downstream from post no. 12. 

Three speeds were simulated: 62 mph (100 km/h), 44 mph (70 km/h), and 31 mph (50 km/h). 

4.4 Qualitative Analysis 

Sequential images of TL-1, TL-2, and TL-3 impacts with the MGS located 6 in. (152 

mm) behind the face of a 6-in. (152-mm) tall AASHTO Type B curb are shown in Figures 19 

through 24. Barrier deflections, barrier exit times and longitudinal exit displacements, vehicle 
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roll and pitch angles, and the number of posts damaged increased with increased impact speed. 

For all impact conditions, vehicles were smoothly redirected with no instabilities. Vehicle 

damage was limited for impacts at TL-1 and TL-2 impact conditions, and barrier permanent sets 

were minimal.  

4.5 Working Width Dependency on Impact Location  

Several impact locations were investigated at each test level to determine how impact 

location influenced maximum dynamic deflections and working widths, as shown in Tables 7 

through 9. Quarter-post impacts occurred at the midspan between post nos. 11 and 12 (at a 

splice) through the midspan of post nos. 12 and 13 (no splice). These impact locations 

demonstrated how impacting at and around a post influenced barrier deflections. 

Maximum working widths were relatively constant regardless of impact location, 

although fluctuations of up to 4 in. (102 mm) were observed for TL-2 and TL-1 impact 

conditions, as shown in Figure 25. Similar to level terrain simulations, the working widths 

repeated at regular intervals, such that the working width at the midspan between post nos. 12 

and 13 was nearly identical to the working width recorded for impacts at the midspan between 

post nos. 11 and 12. Minor differences were likely related to the distribution of upstream and 

downstream rail tension as well as the contributions from posts upstream and downstream from 

impact.  

Barrier deflections and working widths were compared for impacts at TL-1, TL-2, and 

TL-3 conditions and results are summarized in Tables 10 through 12. The impact locations 

associated with maximum working widths were at the ¼-post span upstream from post no. 12 for 

TL-3 impact conditions, between post no. 12 and ¼-post span upstream for TL-2 impact 

conditions, and at post no. 12 for TL-1 impact conditions. As impact speed increased, the 

location associated with the largest working width gradually moved upstream from post no. 12.  

The trend of maximum dynamic deflection was similar for TL-2 and TL-3 impacts, as 

shown in Figure 26. The maximum dynamic deflections were at least 15 in. (381 mm) less than 

the maximum working widths. For all impact conditions, the maximum dynamic deflection 

occurred at approximately the ¼-post span upstream from post no. 12. 

The number of posts deflected were compared for tangent, level-terrain MGS and MGS 

installed in combination with a curb, and results are summarized in Table 13. For purposes of 

analysis, a post was considered “deflected” if it rotated backward at least 1 in. (25 mm) at the 

post bolt. Other posts which twisted toward impact were not considered “deflected”. Likewise, 

posts were considered to be disengaged from the rail if the post bolt was no longer engaged with 

the inside surface of the rail slot. It was observed that, on average, impacts on level terrain 

deflected and disengaged more posts than systems installed in combination with curbs, but the 

effects were more noticeable at lower test levels (i.e., TL-1 and TL-2). Simulations may 

underpredict the number of posts deflected and disengaged due to the difficulty of obtaining 

accurate soil models, but the overall reaction of the systems was reasonable. This may be 

indicative of the severity of an impact when assessed based on energy and system configuration. 
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4.6 Discussion 

MGS maximum dynamic deflections and working widths on level terrain and in 

combination with curbs were compared and are shown in Tables 10 through 12. The MGS 

installed in combination with a curb reduced both dynamic deflections and working widths, 

typically by more than 15%. The reduction in working width was relatively constant for all of the 

speeds considered, ranging between 16% and 25% based on individual impact location, and 

between 17% and 19% on average. Conversely, the maximum dynamic deflection reductions 

ranged broadly for each individual impact location considered, varying from a low of 6% to a 

high of 30%. On average, the presence of curbs reduced dynamic deflections between 9% and 

26%.  

The MGS has been full-scale crash tested and approved with full-post spacing, 12-in. 

(305-mm) deep blockouts and located 6 in. (152 mm) behind the midpoint of the front face of a 

6-in. (152-mm) tall AASHTO Type B curb. The guardrail was approved with tolerances for 

construction such that the guardrail is 6 in. (152 mm) behind the front face of the curb, to 6 in. 

(152 mm) in front of the front face of the curb. Although guardrail was not modeled in front of or 

at the front face of the curb, it is believed that placing the guardrail as far behind the curb as is 

allowable is the most severe configuration [14-17]. Thus, similar application guidelines for 

placement of the MGS in conjunction with a curb apply for lower service level applications.   

The largest variations in working widths based on impact location and speed occurred for 

impacts at TL-1 impact conditions. For TL-3 impact conditions, reductions in dynamic 

deflections and working widths were relatively constant based on impact location. For increases 

in impact speed, the number of posts which the vehicle interacted with increased as well, which 

distributed the force applied by each post and tended to average out fluctuations in lateral 

stiffness due to contributions from the posts.  

In some urban locations, clear zone may come at a premium expense. It may be cost 

effective to install guardrail in these locations, but space requirements may be impractical, due to 

shy line and hazard offsets, particularly for rigid, unmovable hazards. Reducing speed limits to 

accommodate existing working width recommendations may not be practical in all applications. 

For these unique and difficult scenarios, typical recommendations for guardrail offsets –

maintaining a hazard-free envelope defined by the working width – may be impractical. Special 

considerations may be required for these situations. 
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Figure 19. Sequential Images of TL-1 Impact with MGS with Curb 
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Figure 20. Sequential Images of TL-1 Impact with MGS with Curb 
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Figure 21. Sequential Images of TL-2 Impact with MGS with Curb 
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Figure 22. Sequential Images of TL-2 Impact with MGS with Curb 
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Figure 23. Sequential Images of TL-3 Impact with MGS with Curb 
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Figure 24. Sequential Images of TL-3 Impact with MGS with Curb 
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Table 7. Test Level 1: Barrier Deflections and Working Widths 

Test Level 1 - 31 mph  (50 km/h) 

Post 

Location 

Maximum Dynamic Deflection 

in.  (mm) 

Working Width 

in.  (mm) 

Max Working 

Width Location 

11½ 11.6 (295) 28.4 (722) Post no. 12 

11¾ 12.2 (311) 27.6 (701) Post no. 13 

12 12.2 (310) 30.4 (772) Post no. 13 

12¼ 12.3 (313) 30.5 (775) Post no. 13 

12½ 11.0 (279) 28.3 (720) Post no. 13 

Table 8. Test Level 2: Barrier Deflections and Working Widths 

Test Level 2 - 44 mph  (70 km/h) 

Post 

Location 

Maximum Dynamic Deflection 

in.  (mm) 

Working Width 

in.  (mm) 

Max Working 

Width Location 

11½ 22.5 (571) 40.7 (1033) Post no. 13 

11¾ 22.7 (576) 40.9 (1038) Post no. 13 

12 21.7 (551) 39.9 (1013) Post no. 13 

12¼ 20.3 (517) 36.7 (931) Post no. 14 

12½ 21.8 (553) 40.0 (1015) Post no. 14 

Table 9. Test Level 3: Barrier Deflections and Working Widths 

Test Level 3 - 62 mph  (100 km/h) 

Post 

Location 

Maximum Dynamic Deflection 

in.  (mm) 

Working Width 

in.  (mm) 

Max Working 

Width Location 

11½ 33.7 (856) 48.5 (1232) Post no. 13 

11¾ 34.4 (873) 49.2 (1250) Post no. 13 

12 33.3 (847) 48.8 (1240) Post no. 14 

12¼ 32.6 (829) 48.9 (1243) Post no. 14 

12½ 33.2 (844) 48.7 (1238) Post no. 14 
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Figure 25. Maximum Working Widths for MGS Installed in Combination with Curbs, by IS 

Value  

 

Figure 26. Maximum Dynamic Deflection for MGS Installed in Combination with Curb, by IS 

Value 
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Table 10. Comparison of MGS Deflections at TL-1 Impact Conditions  

 

Table 11. Comparison of MGS Deflections at TL-2 Impact Conditions 

 

Table 12. Comparison of MGS Deflections at TL-3 Impact Conditions 

 

Table 13. Simulated Number of Posts Deflected or Disengaged  

Impact 

Condition 

IS Value 

(kJ) 

Standard Configuration, Level Terrain In Combination with Curb 

Posts Deflected Posts Disengaged Posts Deflected Posts Disengaged 

TL-1 38.9 3-4 0 or 1 1 0 

TL-2 78.4 5 2 2-3 1-2 

TL-3 155.6 6-7 2-3 4-6 2-3 

 

 

Level Terrain With Curb % Reduction Level Terrain With Curb % Reduction

11½ 16.6  (422) 11.6 (295) 30% 35.3  (896) 28.4 (722) 20%

11¾ 15.6  (397) 12.2 (311) 22% 37.0  (940) 27.6 (701) 25%

12 15.1  (383) 12.2 (310) 19% 37.6  (955) 30.4 (772) 19%

12¼ 15.7  (398) 12.3 (313) 22% 37.3  (947) 30.5 (775) 18%

12½ 16.0  (405) 11.0 (279) 31% 35.3  (895) 28.4 (720) 20%

Maximum 16.6  (422) 12.3 (313) 26% 37.6  (955) 30.5 (775) 19%

Post 

Location

TL-1 Working Width,   in.  (mm)TL-1 Dynamic Deflection,   in. (mm)

Level Terrain With Curb % Reduction Level Terrain With Curb % Reduction

11½ 24.0  (610) 22.5 (571) 6% 48.5  (1,232) 40.7 (1033) 16%

11¾ 25.0  (634) 22.7 (576) 9% 49.3  (1,251) 40.9 (1038) 17%

12 24.5  (622) 21.7 (551) 11% 46.5  (1,181) 39.9 (1013) 14%

12¼ 24.4  619) 20.3 (517) 17% 47.6  (1,210) 36.7 (931) 23%

12½ 24.1  (612) 21.8 (553) 10% 48.3  (1,228) 40.0 (1015) 17%

Maximum 25.0  (634) 22.7 (576) 9% 49.3  (1,251) 40.9 (1038) 17%

TL-2 Dynamic Deflection,   in. (mm)Post 

Location

TL-2 Working Width,   in.  (mm)

Level Terrain With Curb % Reduction Level Terrain With Curb % Reduction

11½ 37.5  (952) 33.7 (856) 10% 58.1  (1,475) 48.5 (1232) 17%

11¾ 38.0  (964) 34.4 (873) 9% 60.2  (1,530) 49.2 (1250) 18%

12 36.6  (930)** 33.4 (847) 9% 59.6  (1,515)** 48.8 (1240) 18%

12¼ 39.3  (997) 32.6 (829) 17% 59.3  (1,505) 48.9 (1243) 18%

12½ 37.7  (957) 33.2 (844) 12% 58.7  (1,491) 48.7 (1238) 17%

Maximum 39.3  (997) 34.4 (873) 12% 60.2  (1,530) 49.2 (1250) 18%

**Simulation terminated at 240ms

TL-3 Dynamic Deflection,   in. (mm)Post 

Location

TL-3 Working Width,   in.  (mm)
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5 ALTERNATIVE APPLICATIONS FOR MGS WITH LOWER IMPACT SPEEDS 

Study results were examined to determine what modifications, if any, could increase the 

versatility of the MGS, particularly for lower-speed roadways. Several modifications were 

considered for a variety of reasons: reduction or elimination of the blockout, modified post 

spacing, and varying configurations with curbs. 

A non-blocked version of the MGS was successfully tested on level terrain at TL-3 

impact conditions [18-19]. Given the successful performance of the system at TL-3 conditions, it 

is reasonable to assume that the system will also perform acceptably at TL-2 and TL-1 

conditions. The working width of the non-blocked MGS recorded during the test was 43.2 in. 

(1,097 mm). The soil conditions at the time of the test were densely-compacted, coarse crush 

limestone, strong soil per MASH test requirements. 

An attempt was made to estimate the effective working width of a system on level terrain 

without blockouts, and impacted with impact conditions consistent with MASH TL-1 and TL-2 

test criteria. The depth of the posts and rail were added to the maximum dynamic deflection of 

the guardrail, which was typically the element with the largest dynamic deflection, as shown in 

Table 14. Note that the approximate depth of the MGS with a standard configuration is 21¼ in. 

(540 mm), and the depth of the system without blockouts is approximately 9¼ in. (235 mm). 

This approach led to a working width recommendation for guardrail with TL-3 impact conditions 

which was 13% higher than observed in the test, as shown in Table 14. Because this estimate 

was conservative at high-energy impact conditions consistent with TL-3 impacts according to 

MASH, researchers believed that this method was similarly conservative for lower-severity test 

levels. 

Table 14. Estimated Working Width Envelopes for Non-Blocked MGS 

Design 

Speed 

mph (km/h) 

IS Value 

kJ 

Dynamic 

Deflection, MGS 

with Blockouts 

in. (mm) 

Recommended 

Working Width 

Non-Block MGS 

in. (mm) 

Working Width 

Test No. 

MGSNB-1  

Non-Block MGS 

in. (mm) 

31 (50) 38.9 16.6  (422) 25.9  (657) - 

44 (70) 78.4 25.0  (634) 34.3  (869) - 

62 (100) 155.6 39.3  (997) 48.6  (1232) 43.2 (1,097) [18] 

 

At TL-1 impact conditions, the maximum dynamic deflections were typically between 11 

and 12 in. (279 and 305 mm) for MGS installed in combination with curbs, and were as high as 

16.6 in. (422 mm) without curbs. For these low deflections, it may be reasonable to reduce the 

depth of the blockout to 4 or 8 in. (102 or 203 mm) to reduce the cost of the barrier and its 

associated working width. Whereas MGS without blockouts has been installed on level terrain, 

the non-blocked MGS has not been full-scale crash tested in combination with curbs. Full-scale 

crash testing is recommended before installing a non-blocked MGS in combination with 4-in. 

and 6-in. (102-mm and 152-mm) tall AASHTO Type B curbs.  
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Decreased post spacing has been tested on level terrain for MGS with blockouts. A 

quarter post-spacing full-scale crash test was successful according to NCHRP Report No. 350 

[13-14]. Reducing the post spacing from 6 ft – 3 in. (1.9 m) to 18¾ in. (476 mm) resulted in a 

35% reduction in working width, from 57.2 in. (1,453 mm) to 36.7 in. (931 mm). If the trend is 

approximately linear, a half-post spacing would reduce deflections by approximately 18%. These 

reductions would be applicable for full 12-in. (305-mm) deep blockouts and would likely be 

successful with 8-in. (203-mm) deep blockouts as well. Shallower blockouts or non-blocked 

systems may require further analysis with full-scale crash testing and/or simulation. Also, half- 

and quarter-post systems have not been tested in combination with curbs to assess structural 

adequacy and to determine working widths or dynamic deflections. 

For some low-speed locations with limited clearance, working widths may be limited to 

less than recommended based on the MGS installed in combination with curbs. For these 

situations, it may be desirable to install guardrail in combination with 8-in. (203-mm) or 10-in. 

(254-mm) tall curbs. These conditions should be considered for future studies involving lower-

speed impacts into guardrails with limited lateral clearances.  
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6 CONCLUSIONS AND RECOMMENDATIONS 

The MGS is a relatively low-cost barrier, and the TL-3 version could be installed for TL-

2 and TL-1 applications. Although the performance of the MGS, the dynamic deflection, and 

working width of the barrier have been examined in great detail at TL-3 impact conditions, little 

is known about the dynamic deflection and working width of the MGS when impacted at lower 

speeds. Models of the MGS installed on level terrain and in combination with curbs were 

simulated using the non-linear FEA program LS-DYNA to investigate the dynamic deflections 

and working widths of these systems at lower speeds and at alternative impact locations. 

Impact conditions selected for analysis were consistent with TL-3, TL-2, and TL-1 

impact conditions described in MASH. Each simulation utilized a 2270P Chevrolet Silverado 

quad cab pickup truck model impacting at 25 degrees, at speeds of 62, 44, and 31 mph (100, 75, 

or 50 km/h). Maximum dynamic deflections of the rail and posts and extension of the pickup 

truck over the top of the rail were tabulated.  

The recommended working width of MGS installed on level terrain and in combination 

with curbs was determined using simulation results, which generally compared well with TL-3 

full-scale test results. For some installations with minimal clearance, working widths were 

estimated using the maximum dynamic deflection of the rail, and were determined to be 

conservative. Recommended working widths for systems based on design speeds and 

configurations are shown in Table 15.  

Table 15. Recommended Working Width Envelopes for Guardrail  

Design Speed 

mph (km/h) 

Minimum Working Width Envelope by Guardrail Configuration 

in. (mm) 

Level Terrain 

with Blockouts 

6 in. (152 mm) 

Behind Curb with 

Blockouts  

Level Terrain 

without 

Blockouts  

6 in. (152 mm) 

Behind Curb 

without Blockouts 

31 (50) 37.6  (955) 30.5  (775) 25.9  (657) 
Recommend 

Testing 

44 (70) 49.3  (1,251) 40.9  (1,038) 34.3  (869) 
Recommend 

Testing 

62 (100) 

60.2  (1,530) 

(simulation) 

60.3  (1,532)
[11]

 

(full-scale) 

49.6 (1,250) 

(simulation) 

 

 

48.6  (1232) 

(simulation) 

49.6  (1,260)
[15]

 

(full-scale) 

Recommend 

Testing 

 

Reduced post spacings are likely to reduce guardrail working widths for TL-3, TL-2, and 

TL-1 design impact conditions, but were not simulated for this research effort. Previously, full-

scale crash tests were conducted with MGS configured with standard and quarter-post spacings, 

and computer simulation was conducted to estimate working widths for half-post spacing, 

according to TL-3 impact conditions provided in NCHRP Report No. 350 [13-15]. It was noted 

that the working width of a half-post system was approximately 10% smaller than the working 

width of a standard-post spacing system. Likewise, the system with quarter-post spacing working 
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width was 29% smaller than the standard-post spacing system. It is recommended that state 

DOTs use these reduction factors to estimate what effect reduced post spacings will have on 

deflections, for the scenarios provided in Table 15. However, further research is recommended to 

confirm or modify these estimates. 

Further research is necessary for the following MGS configurations: MGS with varying 

height curbs; MGS without blockouts and in combination with curbs; MGS at varying post 

spacings and in combinations with curbs; and MGS without blockouts.  



September 29, 2015 
MwRSF Report No. TRP-03-314-15 

42 

7 REFERENCES 

1.  Reid, J.D., Approach Slopes for Midwest Guardrail System, Journal of Transportation 

Safety and Security, Issue 1, March 19, 2009, pp. 32-45. 

2. Mongiardini, M. and Reid, J.D., Numerical Investigation of the Performance of a 

Roadside Safety Barrier Located Behind the Break Point of a Slope, Presented at the 

2011 ASME International Mechanical Engineering Congress and Exposition, Paper No. 

IMECE2011-64483, Denver, Colorado, November 11-17, 2011, 7 p. 

3. Johnson, E.A., Lechtenberg, K.A., Reid, J.D., Sicking, D.L., Faller, R.K., Bielenberg, 

R.W., and Rohde, J.R., Approach Slope for Midwest Guardrail System, Final Report to 

the Midwest States’ Regional Pooled Fund Program, MwRSF Research Report No. TRP-

03-188-08, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, 

December 2008. 

4. Polivka, K.A., Sicking, D.L., Faller, R.K., and Bielenberg, R.W., Midwest Guardrail 

System Adjacent to 2:1 Slope, Journal of the Transportation Research Board, 

Transportation Research Record No. 2060, 2008, pp. 74-83. 

5. Wiebelhaus, M.J., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, B.W., 

Reid, J.D., and Rohde, J.R., Development and Evaluation of the Midwest Guardrail 

System (MGS) Placed Adjacent to a 2:1 Fill Slope, Final Report to the Midwest States 

Regional Pooled Fund Program, MwRSF Research Report No. TRP-03-185-10, Midwest 

Roadside Safety Facility, University of Nebraska-Lincoln, February 2010. 

6. Bielenberg, R.W., Faller, R.K., Reid, J.D., Rosenbaugh, S.K., and Lechtenberg, K.A., 

Performance of the Midwest Guardrail System with Rectangular Wood Posts, Journal of 

the Transportation Research Board, Transportation Research Record No. 2437, Paper No. 

14-2991, 2014, pp. 27-40. 

7. Gutierrez, D.A., Lechtenberg, K.A., Bielenberg, R.W., Faller, R.K., Reid, J.D., and 

Sicking, D.L., Midwest Guardrail System (MGS) with Southern Yellow Pine Posts, Final 

Report to the Midwest States Regional Pooled Fund Program, MwRSF Research Report 

No. TRP-03-272-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, 

Lincoln, Nebraska, September 2013. 

8. Faller, R.K., Reid, J.D., Kretschmann, D.E., Hascall, J.A, and Sicking, D.L., Midwest 

Guardrail System with Round Timber Posts, Journal of the Transportation Research 

Board No. 2120, Paper No. 09-0547, Transportation Research Record No. 2120, 2009, 

pp. 47-59. 

9. Kretschmann, D.E., Faller, R.K., Reid, J.D., Hascall, J.A., Sicking, D.L., and Rohde, J.R., 

Small Diameter Roundwood, Strong-Post W-Beam Guardrail Systems, Presented to the 

World Conference on Timber Engineering, Portland, Oregon, August 6-10, 2006. 



September 29, 2015 
MwRSF Report No. TRP-03-314-15 

43 

10. Stolle, C.J., Lechtenberg, K.A., Faller, R.K., Rosenbaugh, S.K., Sicking, D.L., Reid, J.D., 

Evaluation of the Midwest Guardrail System (MGS) with White Pine Wood Posts, Final 

Report to Wisconsin Department of Transportation, MwRSF Research Report No. TRP- 

03-241-11, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, March 

2011. 

11. Hascall, J.A., Faller, R.K., Reid, J.D., and Sicking, D.L., Investigating the Use of Small 

Diameter Softwood as Guardrail Posts (Dynamic Test Results), Final Report to the 

Midwest States Regional Pooled Fund Program, MwRSF Research Report No. TRP-03-

179-07, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, March 2007.  

12. Rohde, J.R., Hascall, J.A., Polivka K.A., Faller, R.K., Sicking, D.L., Dynamic Testing of 

Wooden Guardrail Posts – White and Red Pine Species Equivalency Study, Final Report 

to the Midwest States Regional Pooled Fund Program, MwRSF Research Report No. 

TRP-03-154-04, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, 

September 2004. 

13. Sicking, D.L., Reid, J.D., and Rohde, J.R., Development of the Midwest Guardrail 

System, Journal of the Transportation Research Board, Transportation Research Record 

No. 1797, Presented in Washington, D.C., January 2002, pp. 44-52. 

14. Faller, R.K., Polivka, K.A., Kuipers, B.D., Bielenberg, R.W., Reid, J.D., Rohde, J.R., and 

Sicking, D.L., Midwest Guardrail System for Standard and Special Applications, Journal 

of the Transportation Research Board, Transportation Research Record No. 1890, 

Washington, D.C., January 2004, pp. 19-33. 

15. Polivka, K.A., Faller, R.K., Sicking, D.L., Reid, J.D., Rohde, J.R., Holloway, J.C., 

Bielenberg, R.W., and Kuipers, B.D., Development of the Midwest Guardrail System 

(MGS) for Standard and Reduced Post Spacing and in Combination with Curbs, Final 

Report to the Midwest States Regional Pooled Fund Program, Transportation Research 

Report No. TRP-03-139-04, Midwest Roadside Safety Facility, University of Nebraska-

Lincoln, Lincoln, Nebraska, September 2004. 

16. Faller, R.K., Sicking, D.L., Bielenberg, R.W., Rohde, J.R., Polivka, K.A., and Reid, J.D., 

Performance of Steel-Post, W-Beam Guardrail Systems, Journal of the Transportation 

Research Board, Transportation Research Record No. 2025, Paper No. 07-2642, 

Washington, D.C., 2007, pp. 18-33. 

17. Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., and Reid, J.D., 

Performance Evaluation of the Midwest Guardrail System – Update to NCHRP 350 Test 

No. 3-11 (2214MG-1), Final Report to the National Cooperative Highway Research 

Program, Transportation Research Report No. TRP-03-170-06, Midwest Roadside Safety 

Facility, University of Nebraska-Lincoln, October 2006. 

18. Reid, J.D., Faller, R.K., Bielenberg, R.W., and Lechtenberg, K.A., Midwest Guardrail 

System Without Blockouts, Paper No. 13-0418, Journal of the Transportation Research 

Board, Transportation Research Record No. 2377, Washington D.C., 2013, pp 1-13. 



September 29, 2015 
MwRSF Report No. TRP-03-314-15 

44 

19. Schrum, K.D., Lechtenberg, K.A., Bielenberg, R.W., Rosenbaugh, S.K., Faller, R.K., 

Reid, J.D., and Sicking, D.L., Safety Performance Evaluation of the Non-Blocked 

Midwest Guardrail System (MGS), Final Report to the Midwest States Regional Pooled 

Fund Program, MwRSF Research Report No. TRP-03-262-12, Midwest Roadside Safety 

Facility, University of Nebraska-Lincoln, January 2013. 

20. Lechtenberg, K.A., Faller, R.K., Rohde, J.R., Sicking, D.L., and Reid, J.D., Non-Blocked 

Midwest Guardrail System for Wire-Faced Walls of Mechanically Stabilized Earth, 

Journal of the Transportation Board, Transportation Research Record No. 2262, Paper 

No. 11-2684, Washington, D.C., 2012, pp. 94-106. 

21. McGhee, M.D., Faller, R.K., Rohde, J.R., Lechtenberg, K.A., Sicking, D.L., and Reid, 

J.D., Development of an Economical Guardrail System for Use on Wire-Faced, MSE 

Walls, Draft Report to the Federal Highway Administration, MwRSF Research Report 

No. TRP-03-235-11, FHWA Report No. FHWA-CFL/TD-12-009, Midwest Roadside 

Safety Facility, University of Nebraska-Lincoln, February 2012. 

22. Meyer, C.L., Faller, R.K., Lechtenberg, K.A., Sicking, D.L., Rohde, J.R., Reid, J.D., and 

Rosenbaugh, S.K., Phase II Continued Investigation and Dynamic Testing of Wood Posts 

for Use on a Wire-Faced MSE Wall, Draft Report to the Federal Highway 

Administration, MwRSF Research Report No. TRP-03-256-12, FHWA Report No. 

FHWA-CFL/TD-12-010, Midwest Roadside Safety Facility, University of Nebraska-

Lincoln, February 2012. 

23. Rosenbaugh, S.K., Faller, R.K., Lechtenberg, K.A., and Bielenberg, R.W., Weak-Post, 

W-Beam Guardrail Attachment to Culvert Headwalls, Accepted for Publication in the 

Journal of the Transportation Research Board, Paper No. 14-3930, Resubmitted February 

2014. 

24. Schneider, A.J., Rosenbaugh, S.K., Faller, R.K., Sicking, D.L., Lechtenberg, K.A., and 

Reid, J.D., Safety Performance Evaluation of Weak-Post, W-Beam Guardrail Attached to 

Culvert, Final Report to the Midwest States Regional Pooled Fund Program, MwRSF 

Research Report No. TRP-03-277-14, Midwest Roadside Safety Facility, University of 

Nebraska-Lincoln, February 2014. 

25. Bielenberg, R.W., Faller, R.K., Sicking, D.L., Rohde, J.R., and Reid, J.D., Midwest 

Guardrail System for Long-Span Culvert Applications, Journal of the Transportation 

Research Board, Transportation Research Record No. 2025, Washington, D.C., 2007, pp. 

3-17. 

26. Bielenberg, R.W., Faller, R.K., Rohde, J.R., Reid, J.D., Sicking, D.L., Holloway, J.C., 

Allison, E.M., and Polivka, K.A., Midwest Guardrail System for Long-Span Culvert 

Applications, Final Report to the Midwest States Regional Pooled Fund Program, 

MwRSF Research Report No. TRP-03-187-07, Midwest Roadside Safety Facility, 

University of Nebraska-Lincoln, November 2007. 



September 29, 2015 
MwRSF Report No. TRP-03-314-15 

45 

27. Thiele, J.C., Sicking, D.L., Lechtenberg, K.A., Reid, J.D., Faller, R.K., Bielenberg, R.W., 

and Rosenbaugh, S.K., Development of a Low-Cost, Energy-Absorbing Bridge Rail, 

Journal of the Transportation Research Board, Transportation Research Record No. 2262, 

Paper No. 11-2687, Washington, D.C., 2011, pp. 107-118. 

28. Thiele, J.C., Sicking, D.L., Faller, R.K., Bielenberg, R.W., Lechtenberg, K.A., Reid, J.D., 

and Rosenbaugh, S.K., Development of a Low-Cost, Energy-Absorbing Bridge Rail, Final 

Report to the Midwest States Regional Pooled Fund Program, MwRSF Research Report 

No. TRP-03-226-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, 

Lincoln, Nebraska, August 2010. 

29. Lechtenberg, K.A., Development and Implementation of the Simplified Midwest 

Guardrail System Stiffness Transition, Journal of the Transportation Research Board, 

Transportation Research Record No. 2309, Paper No. 12-3367, Washington, D.C., 2012, 

pp. 81-93. 

30. Eller, C.M., Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Reid, J.D., 

Bielenberg, R.W., and Allison, E.M., Development of the Midwest Guardrail System 

(MGS) W-beam to Thrie Beam Transition Element, Final Report to the Midwest States 

Regional Pooled Fund Program, MwRSF Research Report No. TRP-03-167-07, Midwest 

Roadside Safety Facility, University of Nebraska-Lincoln, November 2007.  

31. Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and 

Reid, J.D., Development of the MGS Approach Guardrail Transition Using Standardized 

Steel Posts, Final Report to the Midwest States Regional Pooled Fund Program, MwRSF 

Research Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of 

Nebraska-Lincoln, December 2010. 

32.  Polivka, K.A., Coon, B.A., Sicking, D.L., Faller, R.K., Bielenberg, R.W., Rohde, J.R., 

and Reid, J.D., Midwest Guardrail System W-Beam-to-Thrie-Beam Transition, Journal of 

the Transportation Research Board, Transportation Research Record No. 2025, 

Washington, D.C., 2007, pp. 45-50. 

33. Reid, J.D., Kuipers, B.D., Sicking, D.L., and Faller, R.K., Impact Performance of W-

Beam Guardrail Installed at Various Flare Rates, International Journal of Impact 

Engineering, Issue 36, 2009, pp. 476-485.  

34. Stolle, C.S., Polivka, K.A., Reid, J.D., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and 

Rohde, J.R., Evaluation of Critical Flare Rates for the Midwest Guardrail System (MGS), 

Final Report to the Midwest States Regional Pooled Fund Program, MwRSF Research 

Report No. TRP-03-191-08, Midwest Roadside Safety Facility, University of Nebraska-

Lincoln, Lincoln, Nebraska, July 2008. 

35. Manual for Assessing Safety Hardware (MASH), American Association of State Highway 

and Transportation Officials (AASHTO), Washington, D.C., 2009.  



September 29, 2015 
MwRSF Report No. TRP-03-314-15 

46 

36. Polivka, K.A., Faller, R.K., Sicking, D. L., Rohde, J.R.,  Bielenberg, R.W., Reid, J.D., 

Performance Evaluation of the Midwest Guardrail System – Update to NCHRP 350 Test 

No. 3-11 with 28” C.G. Height (2214MG-2), Final Report to the National Cooperative 

Highway Research Program, MwRSF Research Report No. TRP-03-171-06, Project No. 

NCHRP 22-14(2), Midwest Roadside Safety Facility, Nebraska Transportation Center, 

University of Nebraska-Lincoln, Lincoln, Nebraska, October  2006. 

37. Julin R.D., Identification of a Maximum Guardrail Height for the Midwest Guardrail 

System Using Computer Simulation, Thesis, University of Nebraska-Lincoln, June 2012.  

38. Julin, R.D., Reid, J.D., Faller, R.K., and Mongiardini, M., Determination of the Maximum 

MGS Mounting Height – Phase II Detailed Analysis with LS-DYNA, Final Report to the 

Midwest States Regional Pooled Fund Program, MwRSF Research Report No. TRP-03-

274-12, Midwest Roadside Safety Facility, Nebraska Transportation Center, University 

of Nebraska-Lincoln, Lincoln, Nebraska, December 5, 2012.  

39. Mongiardini, M., Development of a Computer Program for the Verification and 

Validation of Numerical Simulations in Roadside Safety, Dissertation, Worcester 

Polytechnic Institute, April 29, 2010. 

40. Ray, M.H., Plaxico, C.A., and Anghileri, M., Procedures for the Verification and 

Validation of Computer Simulations Used for Roadside Safety Applications, NCHRP 

Web-Only Report No. 179, NCHRP Project No. 22-24, March 2010. 

41. Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., Dynamic evaluation and 

implementation guidelines for a nonproprietary W-beam guardrail trailing-end terminal, 

Journal of the Transportation Research Board No. 2377, 2014, pp. 61-73.  

42. Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, 

K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Final 

Report to the Midwest States Regional Pooled Fund Program, MwRSF Research Report 

No. TRP-03-279-13, Midwest Roadside Safety Facility, Nebraska Transportation Center, 

University of Nebraska-Lincoln, Lincoln, Nebraska, October 2013. 

43. Vehicle Modeling, National Crash Analysis Center, George Washington University, 

Washington, D.C. Retrieved from: http://www.ncac.gwu.edu/research/reports.html, 

August 20, 2014.  

44. Fitzgerald, W.J., W-Beam Guardrail Repair: A Guide for Highway and Street 

Maintenance Personnel, Vanasse Hangen Brustlin Inc., Vienna, Virginia, November 

2008. 

45. Mak, K.K., D.L. Sicking, and B.A. Coon. Identification of Vehicle Impact Conditions 

Associated with Serious Ran-off-Road Crashes. National Cooperative Highway Research 

Report No. 665, Transportation Research Board, Washington, D.C., 2010.  

http://www.ncac.gwu.edu/research/reports.html


September 29, 2015 
MwRSF Report No. TRP-03-314-15 

47 

46. Zhu, L., Faller, R.K., Reid, J.D., Sicking, D.L., Bielenberg, R.W., Lechtenberg, K.A., and 

Benner, C., Performance Limits for 152-mm (6-in.) High Curbs Placed in Advance of the 

MGS Using MASH-08 Vehicles, Part 1: Vehicle Curb Testing and LS-DYNA Analysis, 

Final Report to the Midwest States Regional Pooled Fund Program, MwRSF Research 

Report No. TRP-03-205-09, Midwest Roadside Safety Facility, Nebraska Transportation 

Center, University of Nebraska-Lincoln, Lincoln, Nebraska, May 2009. 

47. Thiele, J.C., Lechtenberg, K.A., Reid, J.D., Faller, R.K., Sicking, D.L., and Bielenberg, 

R.W., Performance Limits for 152-mm (6-in.) High Curbs Placed in Advance of the MGS 

Using MASH-08 Vehicles, Part II: Full-Scale Crash Testing, Final Report to the Midwest 

States Regional Pooled Fund Program, MwRSF Research Report No. TRP-03-221-09, 

Midwest Roadside Safety Facility, Nebraska Transportation Center, University of 

Nebraska-Lincoln, Lincoln, Nebraska, October 2009. 

48. A Policy on Geometric Design of Highways and Streets, American Association of State 

Highway Transportation Officials, 6
th

 Edition, Washington, D.C., 2011. 

49. Faller, R.K., Reid, J.D., Rohde, J.R., Sicking, D.L., and Keller, E.A., Two Approach 

Guardrail Transitions for Concrete Safety Shape Barriers, Final Report to the Midwest 

States Regional Pooled Fund Program, MwRSF Research Report No. TRP-03-69-98, 

Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, 

May 1998. 

50. Winkelbauer, B.J., Putjenter, J.G., Rosenbaugh, S.K., Lechtenberg, K.A., Bielenberg, 

R.W., Faller, R.K., and Reid, J.D., Dynamic Evaluation of MGS Stiffness Transition with 

Curb, Final Report to the Midwest States Regional Pooled Fund Program, MwRSF 

Research Report No. TRP-03-291-14, Midwest Roadside Safety Facility, Nebraska 

Transportation Center, University of Nebraska-Lincoln, Lincoln, Nebraska, June 2014. 

51. Ross, HE Jr, Sicking, D.L., Zimmer, R.A., and Michie, J.D., Recommended Procedures 

for the Safety Performance Evaluation of Highway Features, National Cooperative 

Highway Research Program Report No. 350, Transportation Research Board, National 

Research Council, Washington, DC. 1993.   

52. Hiser, N.R., Slip Base Modeling for Cable Guardrail Systems, Thesis, University of 

Nebraska-Lincoln, April 2003. 

53. Schrum, K.D., Lechtenberg, K.A., Bielenberg, R.W., Rosenbaugh, S.K., Faller, R.K., 

Reid, J.D., and Sicking, D.L., Safety Performance Evaluation of the Non-Blocked 

Midwest Guardrail System (MGS), Final Report to the Midwest States Regional Pooled 

Fund Program, MwRSF Research Report No. TRP-03-262-12, Midwest Roadside Safety 

Facility, Nebraska Transportation Center, University of Nebraska-Lincoln, Lincoln, 

Nebraska, January 2013. 



September 29, 2015 
MwRSF Report No. TRP-03-314-15 

48 

54. McGhee, M.D., Faller, R.K., Rohde, J.R., Lechtenberg, K.A., Sicking, D.L., and Reid, 

J.D., Development of an Economical Guardrail System for Use on Wire-Faced, MSE 

Walls, Draft Final Report to the Federal Highway Administration, MwRSF Report No. 

TRP-03-235-11, FHWA Report No. FHWA-CFL/TD-12-009, Midwest Roadside Safety 

Facility, Nebraska Transportation Center, University of Nebraska-Lincoln, Lincoln, 

Nebraska, February 2012. 

55. Weiland, N.A., Reid, J.D., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and 

Lechtenberg, K.A., Minimum Effective Length for the MGS, Final Report to the 

Wisconsin Department of Transportation, MwRSF Report No. TRP-03-276-13, Midwest 

Roadside Safety Facility, Nebraska Transportation Center, University of Nebraska-

Lincoln, Lincoln, Nebraska, August 2013. 



September 29, 2015 
MwRSF Report No. TRP-03-314-15 

49 

 

 

 

 

 

 

 

 

 

END OF DOCUMENT 

 

 

 

 

 

 


	DISCLAIMER STATEMENT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	1.1 Problem Statement
	1.2 Research Objective
	1.3 Scope

	2 LS-DYNA MODEL CALIBRATION
	2.1 MGS Model
	2.2 Vehicle Model Comparison
	2.2.1 Vehicle Stability and Barrier Deflections
	2.2.2 Velocity Profile


	3 MGS AT TL-1 AND TL-2 IMPACT CONDITIONS
	3.1 Qualitative Analysis
	3.2 Working Width Dependency on Impact Location
	3.3 Maximum Barrier Deflections and Working Widths
	3.4 Discussion

	4 MGS INSTALLED IN COMBINATION WITH CURB
	4.1 Introduction and Motivation
	4.2 Comparison and Validation of Simulation Model with Curb
	4.2.1 Modifications to Level Terrain Baseline Model
	4.2.2 Description of Test No. NPG-5
	4.2.3 Comparison of Results, Simulation and Test No. NPG-5

	4.3 Modifications for Alternative Impact Locations and Speeds
	4.4 Qualitative Analysis
	4.5 Working Width Dependency on Impact Location
	4.6 Discussion

	5 ALTERNATIVE APPLICATIONS FOR MGS WITH LOWER IMPACT SPEEDS
	6 CONCLUSIONS AND RECOMMENDATIONS
	7 REFERENCES

